[1]Morad Aaboud and others. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in $pp$ collisions at $\sqrt s=13$ TeV using the ATLAS detector. 2016.
[2]Georges Aad and others. Measurement of the production cross section of an isolated photon associated with jets in proton-proton collisions at $\sqrt s=7$ TeV with the ATLAS detector. Phys. Rev., D85:092014, 2012. doi:10.1103/PhysRevD.85.092014.
[3]Georges Aad and others. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys.Lett., B716:1–29, 2012. doi:10.1016/j.physletb.2012.08.020.
[4]Georges Aad and others. Measurement of $ZZ$ production in $pp$ collisions at $\sqrt s=7$ TeV and limits on anomalous $ZZZ$ and $ZZ\gamma $ couplings with the ATLAS detector. JHEP, 03:128, 2013. doi:10.1007/JHEP03(2013)128.
[5]Georges Aad and others. Measurement of isolated-photon pair production in $pp$ collisions at $\sqrt s=7$ TeV with the ATLAS detector. JHEP, 01:086, 2013. doi:10.1007/JHEP01(2013)086.
[6]Georges Aad and others. Measurement of the production cross section of jets in association with a Z boson in pp collisions at $\sqrt s$ = 7 TeV with the ATLAS detector. JHEP, 07:032, 2013. doi:10.1007/JHEP07(2013)032.
[7]Georges Aad and others. Measurements of $W \gamma $ and $Z \gamma $ production in $pp$ collisions at $\sqrt s$=7  TeV with the ATLAS detector at the LHC. Phys. Rev., D87(11):112003, 2013. [Erratum: Phys. Rev.D91,no.11,119901(2015)]. doi:10.1103/PhysRevD.87.112003, 10.1103/PhysRevD.91.119901.
[8]Georges Aad and others. Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb$^-1$ of $\sqrt s=7$ TeV proton-proton collision data. Phys. Rev., D87(1):012008, 2013. doi:10.1103/PhysRevD.87.012008.
[9]Georges Aad and others. Measurement of dijet cross sections in $pp$ collisions at 7 TeV centre-of-mass energy using the ATLAS detector. JHEP, 05:059, 2014. doi:10.1007/JHEP05(2014)059.
[10]Georges Aad and others. Measurement of the inclusive isolated prompt photons cross section in pp collisions at $\sqrt s=7$  TeV with the ATLAS detector using 4.6  fb$^−1$. Phys. Rev., D89(5):052004, 2014. doi:10.1103/PhysRevD.89.052004.
[11]Georges Aad and others. Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in $pp$ collisions at $\sqrt s=7\,\mathrm TeV$ using the ATLAS detector. Eur. Phys. J., C74(11):3117, 2014. doi:10.1140/epjc/s10052-014-3117-7.
[12]Georges Aad and others. Measurement of four-jet differential cross sections in $\sqrt s=8$ TeV proton-proton collisions using the ATLAS detector. JHEP, 12:105, 2015. doi:10.1007/JHEP12(2015)105.
[13]Georges Aad and others. Measurement of the inclusive jet cross-section in proton-proton collisions at $ \sqrt s=7 $ TeV using 4.5 fb$^−1$ of data with the ATLAS detector. JHEP, 02:153, 2015. [Erratum: JHEP09,141(2015)]. doi:10.1007/JHEP02(2015)153, 10.1007/JHEP09(2015)141.
[14]Georges Aad and others. Measurement of three-jet production cross-sections in $pp$ collisions at 7 TeV centre-of-mass energy using the ATLAS detector. Eur. Phys. J., C75(5):228, 2015. doi:10.1140/epjc/s10052-015-3363-3.
[15]Georges Aad and others. Measurements of the W production cross sections in association with jets with the ATLAS detector. Eur. Phys. J., C75(2):82, 2015. doi:10.1140/epjc/s10052-015-3262-7.
[16]Georges Aad and others. Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\sqrt s$ = 8 TeV proton-proton collisions using the ATLAS detector. Phys. Rev., D93(3):032009, 2016. doi:10.1103/PhysRevD.93.032009.
[17]Daniel Abercrombie and others. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum. Technical Report, 2015.
[18]Adam Alloul, Neil D. Christensen, Céline Degrande, Claude Duhr, and Benjamin Fuks. FeynRules 2.0 - A complete toolbox for tree-level phenomenology. Comput. Phys. Commun., 185:2250–2300, 2014. doi:10.1016/j.cpc.2014.04.012.
[19]Daniele Alves. Simplified Models for LHC New Physics Searches. J. Phys., G39:105005, 2012. doi:10.1088/0954-3899/39/10/105005.
[20]Mihailo Backović, Michael Krämer, Fabio Maltoni, Antony Martini, Kentarou Mawatari, and Mathieu Pellen. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators. Eur. Phys. J., C75(10):482, 2015. doi:10.1140/epjc/s10052-015-3700-6.
[21]M. Bahr and others. Herwig++ Physics and Manual. Eur. Phys. J., C58:639–707, 2008. doi:10.1140/epjc/s10052-008-0798-9.
[22]Daniele Barducci, Alexander Belyaev, Mathieu Buchkremer, Giacomo Cacciapaglia, Aldo Deandrea, Stefania De Curtis, Jad Marrouche, Stefano Moretti, and Luca Panizzi. Framework for Model Independent Analyses of Multiple Extra Quark Scenarios. JHEP, 12:080, 2014. doi:10.1007/JHEP12(2014)080.
[23]Johannes Bellm and others. Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J., C76(4):196, 2016. doi:10.1140/epjc/s10052-016-4018-8.
[24]Andy Buckley, Jonathan Butterworth, Leif Lonnblad, David Grellscheid, Hendrik Hoeth, and others. Rivet user manual. Comput.Phys.Commun., 184:2803–2819, 2013. doi:10.1016/j.cpc.2013.05.021.
[25]Andy Buckley and others. General-purpose event generators for LHC physics. Phys. Rept., 504:145–233, 2011. doi:10.1016/j.physrep.2011.03.005.
[26]Jonathan M. Butterworth, David Grellscheid, Michael Krämer, and David Yallup. Constraining new physics with collider measurements of Standard Model signatures. 2016. arXiv:1606.05296.
[27]Mikael Chala, Felix Kahlhoefer, Matthew McCullough, Germano Nardini, and Kai Schmidt-Hoberg. Constraining Dark Sectors with Monojets and Dijets. JHEP, 07:089, 2015. doi:10.1007/JHEP07(2015)089.
[28]Serguei Chatrchyan and others. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys.Lett., B716:30–61, 2012. doi:10.1016/j.physletb.2012.08.021.
[29]Serguei Chatrchyan and others. Studies of jet mass in dijet and W/Z + jet events. JHEP, 05:090, 2013. doi:10.1007/JHEP05(2013)090.
[30]Serguei Chatrchyan and others. Measurement of the ratio of inclusive jet cross sections using the anti-$k_T$ algorithm with radius parameters R=0.5 and 0.7 in pp collisions at $\sqrt s=7$  TeV. Phys. Rev., D90(7):072006, 2014. doi:10.1103/PhysRevD.90.072006.
[31]Serguei Chatrchyan and others. Measurement of the triple-differential cross section for photon+jets production in proton-proton collisions at $\sqrt s$=7 TeV. JHEP, 06:009, 2014. doi:10.1007/JHEP06(2014)009.
[32]ATLAS Collaboration. Search for resonances in diphoton events with the ATLAS detector at $\sqrt s$ = 13 TeV. Technical Report ATLAS-CONF-2016-018, CERN, Geneva, Mar 2016. URL:
[33]CMS Collaboration. Search for dark matter production in association with jets, or hadronically decaying W or Z boson at $\sqrt s = 13$ TeV. 2016.
[34]CMS Collaboration. Search for new physics in high mass diphoton events in $3.3~\mathrm fb^-1$ of proton-proton collisions at $\sqrt s=13~\mathrm TeV$ and combined interpretation of searches at $8 \mathrm TeV$ and $13 \mathrm TeV$. Technical Report CMS-PAS-EXO-16-018, CERN, Geneva, 2016. URL:
[35]Eric Conte, Benjamin Fuks, and Guillaume Serret. MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology. Comput. Phys. Commun., 184:222–256, 2013. doi:10.1016/j.cpc.2012.09.009.
[36]Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J., C71:1554, 2011. [Erratum: Eur. Phys. J.C73,2501(2013)]. doi:10.1140/epjc/s10052-011-1554-0, 10.1140/epjc/s10052-013-2501-z.
[37]Kyle Cranmer and Itay Yavin. RECAST: Extending the Impact of Existing Analyses. JHEP, 04:038, 2011. doi:10.1007/JHEP04(2011)038.
[38]Celine Degrande, Claude Duhr, Benjamin Fuks, David Grellscheid, Olivier Mattelaer, and Thomas Reiter. UFO - The Universal FeynRules Output. Comput. Phys. Commun., 183:1201–1214, 2012. doi:10.1016/j.cpc.2012.01.022.
[39]Manuel Drees, Herbi Dreiner, Daniel Schmeier, Jamie Tattersall, and Jong Soo Kim. CheckMATE: Confronting your Favourite New Physics Model with LHC Data. Comput. Phys. Commun., 187:227–265, 2015. doi:10.1016/j.cpc.2014.10.018.
[40]Christoph Englert, Matthew McCullough, and Michael Spannowsky. S-Channel Dark Matter Simplified Models and Unitarity. 2016.
[41]Malcolm Fairbairn, John Heal, Felix Kahlhoefer, and Patrick Tunney. Constraints on Z’ models from LHC dijet searches. 2016.
[42]Patrick J. Fox and Ciaran Williams. Next-to-Leading Order Predictions for Dark Matter Production at Hadron Colliders. Phys. Rev., D87(5):054030, 2013. doi:10.1103/PhysRevD.87.054030.
[43]Robert Garisto. Editorial: theorists react to the cern 750 gev diphoton data. Phys. Rev. Lett., 116:150001, Apr 2016. URL:, doi:10.1103/PhysRevLett.116.150001.
[44]Ulrich Haisch, Felix Kahlhoefer, and Emanuele Re. QCD effects in mono-jet searches for dark matter. JHEP, 12:007, 2013. doi:10.1007/JHEP12(2013)007.
[45]Jan Heisig, Michael Krämer, Mathieu Pellen, and Christopher Wiebusch. Constraints on Majorana Dark Matter from the LHC and IceCube. Phys. Rev., D93(5):055029, 2016. doi:10.1103/PhysRevD.93.055029.
[46]Thomas Jacques, Andrey Katz, Enrico Morgante, Davide Racco, Mohamed Rameez, and Antonio Riotto. Complementarity of DM Searches in a Consistent Simplified Model: the Case of Z’. 2016.
[47]Thomas Junk. Confidence level computation for combining searches with small statistics. Nucl. Instrum. Meth., A434:435–443, 1999. doi:10.1016/S0168-9002(99)00498-2.
[48]Felix Kahlhoefer, Kai Schmidt-Hoberg, Thomas Schwetz, and Stefan Vogl. Implications of unitarity and gauge invariance for simplified dark matter models. JHEP, 02:016, 2016. [JHEP02,016(2016)]. doi:10.1007/JHEP02(2016)016.
[49]Vardan Khachatryan and others. Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at $\sqrt s=7$ TeV. Phys. Lett., B741:12–37, 2015. doi:10.1016/j.physletb.2014.12.003.
[50]Vardan Khachatryan and others. Measurements of jet multiplicity and differential production cross sections of $Z +$ jets events in proton-proton collisions at $\sqrt s =$ 7 TeV. Phys. Rev., D91(5):052008, 2015. doi:10.1103/PhysRevD.91.052008.
[51]Vardan Khachatryan and others. Measurement of the double-differential inclusive jet cross section in proton-proton collisions at sqrt(s) = 13 TeV. 2016.
[52]Vardan Khachatryan and others. Measurement of the integrated and differential t-tbar production cross sections for high-pt top quarks in pp collisions at sqrt(s) = 8 TeV. 2016.
[53]Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Wolfgang Magerl, Doris Proschofsky-Spindler, and Wolfgang Waltenberger. SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry. Eur. Phys. J., C74:2868, 2014. doi:10.1140/epjc/s10052-014-2868-5.
[54]Matthias Neubert, Jian Wang, and Cen Zhang. Higher-Order QCD Predictions for Dark Matter Production in Mono-$Z$ Searches at the LHC. JHEP, 02:082, 2016. doi:10.1007/JHEP02(2016)082.
[55]Michele Papucci, Kazuki Sakurai, Andreas Weiler, and Lisa Zeune. Fastlim: a fast LHC limit calculator. Eur. Phys. J., C74(11):3163, 2014. doi:10.1140/epjc/s10052-014-3163-1.
[56]Alexander L. Read. Presentation of search results: The CL(s) technique. J. Phys., G28:2693–2704, 2002. [,11(2002)]. doi:10.1088/0954-3899/28/10/313.
[57]Abraham Wald. An extension of Wilks‘ method for setting tolerance limits. Annals Math. Statist., 14(1):45–55, March 1943. URL:, doi:
[58]S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. Annals Math. Statist., 9(1):60–62, 1938. doi:10.1214/aoms/1177732360.