Bibliography

[1]Atlas publication policy, available from the atlas publication committee web page: http://atlas.web.cern.ch/atlas/groups/general/scinotes/scinotes.html.
[2]Final report of the atlas aod/esd definition task force, atlas-soft-2004-006. 2004.
[3]Report of the event tag review and recommendation group, atl-soft-pub-2006-002. 2006.
[4]Atlas streams test relational database:\ http://test-service-tags.web.cern.ch/test-service-tags/prod/tag_browser.php. 2007.
[5]Morad Aaboud and others. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in $pp$ collisions at $\sqrt s=13$  TeV using the ATLAS detector. Phys. Rev., D94(3):032005, 2016. arXiv:1604.07773, doi:10.1103/PhysRevD.94.032005.
[6]Morad Aaboud and others. Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in $pp$ collisions at $\mathbf \sqrt s=13$ TeV using the ATLAS detector. Eur. Phys. J., C77(11):765, 2017. arXiv:1707.03263, doi:10.1140/epjc/s10052-017-5315-6.
[7]Morad Aaboud and others. Measurement of the $k_\mathrm t$ splitting scales in $Z \to \ell \ell $ events in $pp$ collisions at $\sqrt s = 8$ TeV with the ATLAS detector. JHEP, 08:026, 2017. arXiv:1704.01530, doi:10.1007/JHEP08(2017)026.
[8]Morad Aaboud and others. Search for new high-mass phenomena in the dilepton final state using 36 fb$^-1$ of proton-proton collision data at $ \sqrt s=13 $ TeV with the ATLAS detector. JHEP, 10:182, 2017. arXiv:1707.02424, doi:10.1007/JHEP10(2017)182.
[9]Morad Aaboud and others. Search for triboson $W^\pm W^\pm W^\mp $ production in $pp$ collisions at $\sqrt s=8$ $\text TeV$ with the ATLAS detector. Eur. Phys. J., C77(3):141, 2017. arXiv:1610.05088, doi:10.1140/epjc/s10052-017-4692-1.
[10]Morad Aaboud and others. $ZZ \to \ell ^+\ell ^-\ell ^\prime +\ell ^\prime -$ cross-section measurements and search for anomalous triple gauge couplings in 13 TeV $pp$ collisions with the ATLAS detector. Phys. Rev., D97(3):032005, 2018. arXiv:1709.07703, doi:10.1103/PhysRevD.97.032005.
[11]Morad Aaboud and others. Measurements of $t\bar t$ differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in $pp$ collisions at $\sqrt s=13\,$ TeV using the ATLAS detector. Phys. Rev., D98(1):012003, 2018. arXiv:1801.02052, doi:10.1103/PhysRevD.98.012003.
[12]Morad Aaboud and others. Search for new phenomena in events with same-charge leptons and $b$-jets in $pp$ collisions at $\sqrt s= 13$ TeV with the ATLAS detector. JHEP, 12:039, 2018. arXiv:1807.11883, doi:10.1007/JHEP12(2018)039.
[13]Morad Aaboud and others. Search for pair- and single-production of vector-like quarks in final states with at least one $Z$ boson decaying into a pair of electrons or muons in $pp$ collision data collected with the ATLAS detector at $\sqrt s = 13$ TeV. Phys. Rev., D98(11):112010, 2018. arXiv:1806.10555, doi:10.1103/PhysRevD.98.112010.
[14]Morad Aaboud and others. Constraints on mediator-based dark matter and scalar dark energy models using $\sqrt s = 13$ TeV $pp$ collision data collected by the ATLAS detector. JHEP, 05:142, 2019. arXiv:1903.01400, doi:10.1007/JHEP05(2019)142.
[15]Morad Aaboud and others. Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector. Technical Report, CERN, 2019. arXiv:1902.05892.
[16]Georges Aad and others. Measurement of the production cross section of an isolated photon associated with jets in proton-proton collisions at $\sqrt s=7$ TeV with the ATLAS detector. Phys. Rev., D85:092014, 2012. arXiv:1203.3161, doi:10.1103/PhysRevD.85.092014.
[17]Georges Aad and others. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys.Lett., B716:1–29, 2012. arXiv:1207.7214, doi:10.1016/j.physletb.2012.08.020.
[18]Georges Aad and others. Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a $b$-quark pair with the ATLAS detector. Phys.Lett., B718:369–390, 2012. arXiv:1207.0210, doi:10.1016/j.physletb.2012.10.061.
[19]Georges Aad and others. Dynamics of isolated-photon plus jet production in pp collisions at $\sqrt (s)=7$ TeV with the ATLAS detector. Nucl. Phys., B875:483–535, 2013. arXiv:1307.6795, doi:10.1016/j.nuclphysb.2013.07.025.
[20]Georges Aad and others. Measurement of $ZZ$ production in $pp$ collisions at $\sqrt s=7$ TeV and limits on anomalous $ZZZ$ and $ZZ\gamma $ couplings with the ATLAS detector. JHEP, 03:128, 2013. arXiv:1211.6096, doi:10.1007/JHEP03(2013)128.
[21]Georges Aad and others. Measurement of isolated-photon pair production in $pp$ collisions at $\sqrt s=7$ TeV with the ATLAS detector. JHEP, 01:086, 2013. arXiv:1211.1913, doi:10.1007/JHEP01(2013)086.
[22]Georges Aad and others. Measurement of the production cross section of jets in association with a Z boson in pp collisions at $\sqrt s$ = 7 TeV with the ATLAS detector. JHEP, 07:032, 2013. arXiv:1304.7098, doi:10.1007/JHEP07(2013)032.
[23]Georges Aad and others. Measurements of $W \gamma $ and $Z \gamma $ production in $pp$ collisions at $\sqrt s$=7  TeV with the ATLAS detector at the LHC. Phys. Rev., D87(11):112003, 2013. [Erratum: Phys. Rev.D91,no.11,119901(2015)]. arXiv:1302.1283, doi:10.1103/PhysRevD.87.112003, 10.1103/PhysRevD.91.119901.
[24]Georges Aad and others. Performance of jet substructure techniques for large-$R$ jets in proton-proton collisions at $\sqrt s$ = 7 TeV using the ATLAS detector. JHEP, 1309:076, 2013. arXiv:1306.4945, doi:10.1007/JHEP09(2013)076.
[25]Georges Aad and others. Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb$^-1$ of $\sqrt s=7$ TeV proton-proton collision data. Phys. Rev., D87(1):012008, 2013. arXiv:1208.0949, doi:10.1103/PhysRevD.87.012008.
[26]Georges Aad and others. Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in $pp$ collisions at $\sqrt s$=8 TeV with the ATLAS detector. Phys. Lett., B738:234–253, 2014. arXiv:1408.3226, doi:10.1016/j.physletb.2014.09.054.
[27]Georges Aad and others. Measurement of dijet cross sections in $pp$ collisions at 7 TeV centre-of-mass energy using the ATLAS detector. JHEP, 05:059, 2014. arXiv:1312.3524, doi:10.1007/JHEP05(2014)059.
[28]Georges Aad and others. Measurement of the electroweak production of dijets in association with a Z-boson and distributions sensitive to vector boson fusion in proton-proton collisions at $\sqrt s =$ 8 TeV using the ATLAS detector. JHEP, 04:031, 2014. arXiv:1401.7610, doi:10.1007/JHEP04(2014)031.
[29]Georges Aad and others. Measurement of the inclusive isolated prompt photons cross section in pp collisions at $\sqrt s=7$  TeV with the ATLAS detector using 4.6  fb$^−1$. Phys. Rev., D89(5):052004, 2014. arXiv:1311.1440, doi:10.1103/PhysRevD.89.052004.
[30]Georges Aad and others. Measurement of the low-mass Drell-Yan differential cross section at $\sqrt s$ = 7 TeV using the ATLAS detector. JHEP, 06:112, 2014. arXiv:1404.1212, doi:10.1007/JHEP06(2014)112.
[31]Georges Aad and others. Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\sqrt s=8$ TeV with ATLAS. JHEP, 09:112, 2014. arXiv:1407.4222, doi:10.1007/JHEP09(2014)112.
[32]Georges Aad and others. Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in $pp$ collisions at $\sqrt s=7\,\mathrm TeV$ using the ATLAS detector. Eur. Phys. J., C74(11):3117, 2014. arXiv:1407.5756, doi:10.1140/epjc/s10052-014-3117-7.
[33]Georges Aad and others. Measurements of normalized differential cross sections for $t\bar t$ production in pp collisions at $\sqrt s=7$  TeV using the ATLAS detector. Phys.Rev., D90(7):072004, 2014. arXiv:1407.0371, doi:10.1103/PhysRevD.90.072004.
[34]Georges Aad and others. Measurement of four-jet differential cross sections in $\sqrt s=8$ TeV proton-proton collisions using the ATLAS detector. JHEP, 12:105, 2015. arXiv:1509.07335, doi:10.1007/JHEP12(2015)105.
[35]Georges Aad and others. Measurement of the inclusive jet cross-section in proton-proton collisions at $ \sqrt s=7 $ TeV using 4.5 fb$^−1$ of data with the ATLAS detector. JHEP, 02:153, 2015. [Erratum: JHEP09,141(2015)]. arXiv:1410.8857, doi:10.1007/JHEP02(2015)153, 10.1007/JHEP09(2015)141.
[36]Georges Aad and others. Measurement of three-jet production cross-sections in $pp$ collisions at 7 TeV centre-of-mass energy using the ATLAS detector. Eur. Phys. J., C75(5):228, 2015. arXiv:1411.1855, doi:10.1140/epjc/s10052-015-3363-3.
[37]Georges Aad and others. Measurements of the W production cross sections in association with jets with the ATLAS detector. Eur. Phys. J., C75(2):82, 2015. arXiv:1409.8639, doi:10.1140/epjc/s10052-015-3262-7.
[38]Georges Aad and others. Search for the $b\bar b$ decay of the Standard Model Higgs boson in associated $(W/Z)H$ production with the ATLAS detector. JHEP, 1501:069, 2015. arXiv:1409.6212, doi:10.1007/JHEP01(2015)069.
[39]Georges Aad and others. Search for vector-like $B$ quarks in events with one isolated lepton, missing transverse momentum and jets at $\sqrt s=$ 8 TeV with the ATLAS detector. Phys. Rev., D91(11):112011, 2015. arXiv:1503.05425, doi:10.1103/PhysRevD.91.112011.
[40]Georges Aad and others. Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\sqrt s$ = 8 TeV proton-proton collisions using the ATLAS detector. Phys. Rev., D93(3):032009, 2016. arXiv:1510.03818, doi:10.1103/PhysRevD.93.032009.
[41]Georges Aad and others. Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at $ \sqrt s=8 $ TeV with the ATLAS detector. JHEP, 08:009, 2016. arXiv:1606.01736, doi:10.1007/JHEP08(2016)009.
[42]Georges Aad and others. Measurement of the inclusive isolated prompt photon cross section in pp collisions at $ \sqrt s=8 $ TeV with the ATLAS detector. JHEP, 08:005, 2016. arXiv:1605.03495, doi:10.1007/JHEP08(2016)005.
[43]Georges Aad and others. Measurement of the transverse momentum and $\phi ^*_\eta $ distributions of Drell–Yan lepton pairs in proton–proton collisions at $\sqrt s=8$ TeV with the ATLAS detector. Eur. Phys. J., C76(5):291, 2016. arXiv:1512.02192, doi:10.1140/epjc/s10052-016-4070-4.
[44]Georges Aad and others. Measurement of total and differential $W^+W^-$ production cross sections in proton-proton collisions at $\sqrt s=$ 8 TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings. JHEP, 09:029, 2016. arXiv:1603.01702, doi:10.1007/JHEP09(2016)029.
[45]Georges Aad and others. Measurements of $Z\gamma $ and $Z\gamma \gamma $ production in $pp$ collisions at $\sqrt s=$ 8 TeV with the ATLAS detector. Phys. Rev., D93(11):112002, 2016. arXiv:1604.05232, doi:10.1103/PhysRevD.93.112002.
[46]Georges Aad and others. Measurements of four-lepton production in $pp$ collisions at $\sqrt s=$ 8 TeV with the ATLAS detector. Phys. Lett., B753:552–572, 2016. arXiv:1509.07844, doi:10.1016/j.physletb.2015.12.048.
[47]Georges Aad and others. Search for the production of single vector-like and excited quarks in the $Wt$ final state in $pp$ collisions at $\sqrt s$ = 8 TeV with the ATLAS detector. JHEP, 02:110, 2016. arXiv:1510.02664, doi:10.1007/JHEP02(2016)110.
[48]Georges Aad and others. Constraints on mediator-based dark matter models using $\sqrt s = 13$ TeV $pp$ collisions at the LHC with the ATLAS detector. Technical Report ATLAS-CONF-2018-051, CERN, Geneva, Nov 2018. URL: https://cds.cern.ch/record/2646248.
[49]R Aaij and others. Measurement of the cross-section for $Z \to e^+e^-$ production in $pp$ collisions at $\sqrt s=7$ TeV. JHEP, 02:106, 2013. arXiv:1212.4620, doi:10.1007/JHEP02(2013)106.
[50]Roel Aaij and others. Study of forward Z + jet production in pp collisions at $\sqrt s = 7$ TeV. JHEP, 01:033, 2014. arXiv:1310.8197, doi:10.1007/JHEP01(2014)033.
[51]Roel Aaij and others. Search for Dark Photons Produced in 13 TeV $pp$ Collisions. Phys. Rev. Lett., 120(6):061801, 2018. arXiv:1710.02867, doi:10.1103/PhysRevLett.120.061801.
[52]V. M. Abazov and others. Subjet multiplicity of gluon and quark jets reconstructed with the $k_t$ algorithm in $p\bar p$ collisions. Phys. Rev., D65:052008, 2002. arXiv:hep-ex/0108054.
[53]G. Abbiendi and others. Di-jet production in photon photon collisions at s(ee)**(1/2) = from 189-gev to 209-gev. Eur. Phys. J., C31:307–325, 2003. arXiv:hep-ex/0301013.
[54]G. Abbiendi and others. Scaling violations of quark and gluon jet fragmentation functions in e+ e- annihilations at s**(1/2) = 91.2-gev and 183-gev - 209-gev. Eur. Phys. J., C37:25–47, 2004. arXiv:hep-ex/0404026.
[55]Daniel Abercrombie and others. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum. Technical Report, FNAL, 2015. arXiv:arXiv:1507.00966.
[56]Elena Accomando, Claudio Coriano, Luigi Delle Rose, Juri Fiaschi, Carlo Marzo, and Stefano Moretti. Z$^′$, Higgses and heavy neutrinos in U(1)$^′$ models: from the LHC to the GUT scale. JHEP, 07:086, 2016. arXiv:1605.02910, doi:10.1007/JHEP07(2016)086.
[57]Elena Accomando, Luigi Delle Rose, Stefano Moretti, Emmanuel Olaiya, and Claire H. Shepherd-Themistocleous. Novel SM-like Higgs decay into displaced heavy neutrino pairs in U(1)′ models. JHEP, 04:081, 2017. arXiv:1612.05977, doi:10.1007/JHEP04(2017)081.
[58]Elena Accomando, Luigi Delle Rose, Stefano Moretti, Emmanuel Olaiya, and Claire H. Shepherd-Themistocleous. Extra Higgs boson and Z$^′$ as portals to signatures of heavy neutrinos at the LHC. JHEP, 02:109, 2018. arXiv:1708.03650, doi:10.1007/JHEP02(2018)109.
[59]D. Acosta and others. Study of jet shapes in inclusive jet production in $p\bar p$ collisions at $\sqrt s=1.96$ tev. Phys. Rev., D71:112002, 2005. arXiv:hep-ex/0505013.
[60]P. A. R. Ade and others. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys., 594:A13, 2016. arXiv:1502.01589, doi:10.1051/0004-6361/201525830.
[61]J. A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Pérez-Victoria. Handbook of vectorlike quarks: Mixing and single production. Phys. Rev., D88(9):094010, 2013. arXiv:1306.0572, doi:10.1103/PhysRevD.88.094010.
[62]Andreas Albert and others. Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels. Technical Report, CERN, 2017. arXiv:1703.05703.
[63]S. Alekhin and others. Hera and the lhc - a workshop on the implications of hera for lhc physics: proceedings part a. Technical Report, DESY, 2005. arXiv:hep-ph/0601012.
[64]B. Allanach and others. Searching for R parity violation at Run II of the Tevatron. In Physics at Run II: Workshop on Supersymmetry / Higgs: Summary Meeting Batavia, Illinois, November 19-21, 1998. 1999. URL: http://lss.fnal.gov/cgi-bin/find_paper.pl?pub-00-387, arXiv:hep-ph/9906224.
[65]B. C. Allanach, J. M. Butterworth, and Tyler Corbett. Collider constraints on Z$^′$ models for neutral current B-anomalies. JHEP, 08:106, 2019. arXiv:1904.10954, doi:10.1007/JHEP08(2019)106.
[66]Adam Alloul, Neil D. Christensen, Céline Degrande, Claude Duhr, and Benjamin Fuks. FeynRules 2.0 - A complete toolbox for tree-level phenomenology. Comput. Phys. Commun., 185:2250–2300, 2014. arXiv:1310.1921, doi:10.1016/j.cpc.2014.04.012.
[67]S. Allwood. Manchester PhD thesis. 2006.
[68]A. Altheimer, A. Arce, L. Asquith, J. Backus Mayes, E. Bergeaas Kuutmann, and others. Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012. Eur.Phys.J., C74:2792, 2014. arXiv:1311.2708, doi:10.1140/epjc/s10052-014-2792-8.
[69]Daniel Alva, Tao Han, and Richard Ruiz. Heavy Majorana neutrinos from $W\gamma $ fusion at hadron colliders. JHEP, 02:072, 2015. arXiv:1411.7305, doi:10.1007/JHEP02(2015)072.
[70]Daniele Alves. Simplified Models for LHC New Physics Searches. J. Phys., G39:105005, 2012. arXiv:1105.2838, doi:10.1088/0954-3899/39/10/105005.
[71]J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. -S. Shao, T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP, 07:079, 2014. arXiv:1405.0301, doi:10.1007/JHEP07(2014)079.
[72]S. Amrith, J. M. Butterworth, F. F. Deppisch, W. Liu, A. Varma, and D. Yallup. LHC Constraints on a $B-L$ Gauge Model using Contur. Technical Report, UCL, 2018. arXiv:1811.11452.
[73]Andrei Angelescu, Grégory Moreau, and François Richard. Scalar production in association with a Z boson at the LHC and ILC: The mixed Higgs-radion case of warped models. Phys. Rev., D96(1):015019, 2017. arXiv:1702.03984, doi:10.1103/PhysRevD.96.015019.
[74]P. L. Anthony and others. Observation of parity nonconservation in Moller scattering. Phys. Rev. Lett., 92:181602, 2004. arXiv:hep-ex/0312035, doi:10.1103/PhysRevLett.92.181602.
[75]Nima Arkani-Hamed, Andrew G. Cohen, and Howard Georgi. Electroweak symmetry breaking from dimensional deconstruction. Phys. Lett., B513:232–240, 2001. arXiv:hep-ph/0105239.
[76]Mattelaer O. Artoisenet P., Frederix R. and Rietkerk R. Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations. JHEP, 2012. arXiv:1212.3460v2, doi:10.1007/JHEP03(2013)015.
[77]ATLAS. Technical design report, CERN/LHCC/94-13. 1994.
[78]ATLAS. Detector physics performance technical design report, CERN/LHCC/99-14/15. 1999.
[79]ATLAS. ATLAS Sensitivity to the Standard Model Higgs in the HW and HZ Channels at High Transverse Momenta. Technical Report ATL-PHYS-PUB-2009-088, CERN, Geneva, August 2009.
[80]ATLAS. Calibrating the $b$-tag and mistag efficiencies of the sv0 $b$-tagging algorithm in 3~pb$^-1$ of data with the atlas detector. Technical Report ATLAS-CONF-2010-099, CERN, Geneva, Dec 2010.
[81]Anupama Atre, Georges Azuelos, Marcela Carena, Tao Han, Erkcan Ozcan, Jose Santiago, and Gokhan Unel. Model-Independent Searches for New Quarks at the LHC. JHEP, 08:080, 2011. arXiv:1102.1987, doi:10.1007/JHEP08(2011)080.
[82]Anupama Atre, Tao Han, Silvia Pascoli, and Bin Zhang. The Search for Heavy Majorana Neutrinos. JHEP, 05:030, 2009. arXiv:0901.3589, doi:10.1088/1126-6708/2009/05/030.
[83]M Baak, M Petteni, and N Makovec. Data-quality requirements and event cleaning for jets and missing transverse energy reconstruction with the atlas detector in proton-proton collisions at a center-of-mass energy of $sqrts=7$ tev. Technical Report ATLAS-COM-CONF-2010-038, CERN, Geneva, May 2010.
[84]Mihailo Backović, Michael Krämer, Fabio Maltoni, Antony Martini, Kentarou Mawatari, and Mathieu Pellen. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators. Eur. Phys. J., C75(10):482, 2015. arXiv:1508.05327, doi:10.1140/epjc/s10052-015-3700-6.
[85]M. Bahr and others. Herwig++ Physics and Manual. Eur. Phys. J., C58:639–707, 2008. arXiv:0803.0883, doi:10.1140/epjc/s10052-008-0798-9.
[86]Austin Ball and others. Cms technical design report, volume ii: physics performance. J. Phys., G34:995–1579, 2007.
[87]Shankha Banerjee, Manimala Mitra, and Michael Spannowsky. Searching for a Heavy Higgs boson in a Higgs-portal B-L Model. Phys. Rev., D92(5):055013, 2015. arXiv:1506.06415, doi:10.1103/PhysRevD.92.055013.
[88]Daniele Barducci, Alexander Belyaev, Mathieu Buchkremer, Giacomo Cacciapaglia, Aldo Deandrea, Stefania De Curtis, Jad Marrouche, Stefano Moretti, and Luca Panizzi. Framework for Model Independent Analyses of Multiple Extra Quark Scenarios. JHEP, 12:080, 2014. arXiv:1405.0737, doi:10.1007/JHEP12(2014)080.
[89]Vernon D. Barger, King-Man Cheung, Tao Han, J. Ohnemus, and D. Zeppenfeld. A comparative study of the benefits of forward jet tagging in heavy higgs production at the ssc. Phys. Rev., D44:1426–1437, 1991.
[90]Vernon D. Barger, King-man Cheung, Tao Han, and D. Zeppenfeld. Single forward jet tagging and central jet vetoing to identify the leptonic w w decay mode of a heavy higgs boson. Phys. Rev., D44:2701–2716, 1991.
[91]Vernon D. Barger, Tao Han, and R. J. N. Phillips. Improving the heavy higgs boson two charged lepton - two neutrino signal. Phys. Rev., D37:2005–2008, 1988.
[92]A. Bassetto, M. Ciafaloni, and G. Marchesini. Jet Structure and Infrared Sensitive Quantities in Perturbative QCD. Phys. Rept., 100:201–272, 1983.
[93]A. Bassetto, M. Ciafaloni, G. Marchesini, and Alfred H. Mueller. Jet Multiplicity and Soft Gluon Factorization. Nucl. Phys., B207:189, 1982.
[94]Brian Batell, Maxim Pospelov, and Brian Shuve. Shedding Light on Neutrino Masses with Dark Forces. JHEP, 08:052, 2016. arXiv:1604.06099, doi:10.1007/JHEP08(2016)052.
[95]Martin Bauer, Ulrich Haisch, and Felix Kahlhoefer. Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators. JHEP, 05:138, 2017. arXiv:1701.07427, doi:10.1007/JHEP05(2017)138.
[96]G. Bellini and others. Precision measurement of the 7Be solar neutrino interaction rate in Borexino. Phys. Rev. Lett., 107:141302, 2011. arXiv:1104.1816, doi:10.1103/PhysRevLett.107.141302.
[97]Johannes Bellm and others. Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J., C76(4):196, 2016. arXiv:1512.01178, doi:10.1140/epjc/s10052-016-4018-8.
[98]Johannes Bellm and others. Herwig 7.1 Release Note. Technical Report, Various, 2017. arXiv:1705.06919.
[99]Alexander Belyaev, Giacomo Cacciapaglia, Haiying Cai, Gabriele Ferretti, Thomas Flacke, Alberto Parolini, and Hugo Serodio. Di-boson signatures as Standard Candles for Partial Compositeness. JHEP, 01:094, 2017. arXiv:1610.06591, doi:10.1007/JHEP01(2017)094.
[100]P. S. Bhupal Dev and Apostolos Pilaftsis. Light and Superlight Sterile Neutrinos in the Minimal Radiative Inverse Seesaw Model. Phys. Rev., D87(5):053007, 2013. arXiv:1212.3808, doi:10.1103/PhysRevD.87.053007.
[101]Philippe Brax, Clare Burrage, Christoph Englert, and Michael Spannowsky. LHC Signatures Of Scalar Dark Energy. Phys. Rev., D94(8):084054, 2016. arXiv:1604.04299, doi:10.1103/PhysRevD.94.084054.
[102]G. Brooijmans and others. Les Houches 2017: Physics at TeV Colliders New Physics Working Group Report. In Les Houches 2017: Physics at TeV Colliders New Physics Working Group Report. 2018. URL: http://lss.fnal.gov/archive/2017/conf/fermilab-conf-17-664-ppd.pdf, arXiv:1803.10379.
[103]Diogo Buarque Franzosi, Federica Fabbri, and Steffen Schumann. Constraining scalar resonances with top-quark pair production at the LHC. JHEP, 03:022, 2018. arXiv:1711.00102, doi:10.1007/JHEP03(2018)022.
[104]Mathieu Buchkremer, Giacomo Cacciapaglia, Aldo Deandrea, and Luca Panizzi. Model Independent Framework for Searches of Top Partners. Nucl. Phys., B876:376–417, 2013. arXiv:1305.4172, doi:10.1016/j.nuclphysb.2013.08.010.
[105]Andy Buckley, Jonathan Butterworth, Leif Lonnblad, David Grellscheid, Hendrik Hoeth, and others. Rivet user manual. Comput.Phys.Commun., 184:2803–2819, 2013. arXiv:1003.0694, doi:10.1016/j.cpc.2013.05.021.
[106]Andy Buckley and others. General-purpose event generators for LHC physics. Phys. Rept., 504:145–233, 2011. arXiv:1101.2599, doi:10.1016/j.physrep.2011.03.005.
[107]D. Buskulic and others. Quark and gluon jet properties in symmetric three jet events. Phys. Lett., B384:353–364, 1996.
[108]Giorgio Busoni and others. Recommendations on presenting LHC searches for missing transverse energy signals using simplified $s$-channel models of dark matter. Technical Report, CERN, 2016. arXiv:1603.04156.
[109]J. Butterworth and Herbert K. Dreiner. R-parity violation at HERA. Nucl. Phys., B397:3–34, 1993. arXiv:hep-ph/9211204, doi:10.1016/0550-3213(93)90334-L.
[110]J. M. Butterworth. BSM constraints from model-independent measurements: A Contur Update. In 5th Biennial Workshop on Discovery Physics at the LHC (Kruger2018) Hazyview, Mpumulanga, South Africa, December 3-7, 2018. 2019. arXiv:1902.03067.
[111]J. M. Butterworth, J. P. Couchman, B. E. Cox, and B. M. Waugh. Ktjet: a c++ implementation of the k(t) clustering algorithm. Comput. Phys. Commun., 153:85–96, 2003. arXiv:hep-ph/0210022.
[112]J. M. Butterworth, John R. Ellis, and A. R. Raklev. Reconstructing sparticle mass spectra using hadronic decays. JHEP, 05:033, 2007. arXiv:hep-ph/0702150.
[113]J. M. Butterworth, Jeffrey R. Forshaw, and M. H. Seymour. Multiparton interactions in photoproduction at hera. Z. Phys., C72:637–646, 1996. arXiv:hep-ph/9601371.
[114]Jonathan M. Butterworth, Mikael Chala, Christoph Englert, Michael Spannowsky, and Arsenii Titov. Higgs phenomenology as a probe of sterile neutrinos. Technical Report, arXiv, 2019. arXiv:1909.04665.
[115]Jonathan M. Butterworth, Adam R. Davison, Mathieu Rubin, and Gavin P. Salam. Jet substructure as a new Higgs search channel at the LHC. Phys.Rev.Lett., 100:242001, 2008. arXiv:0802.2470, doi:10.1103/PhysRevLett.100.242001.
[116]Jonathan M. Butterworth, David Grellscheid, Michael Krämer, Bjärn Sarrazin, and David Yallup. Constraining new physics with collider measurements of Standard Model signatures. JHEP, 03:078, 2017. arXiv:1606.05296, doi:10.1007/JHEP03(2017)078.
[117]G. Cacciapaglia, C. Csaki, G. Marandella, and A. Strumia. The Minimal Set of Electroweak Precision Parameters. Phys. Rev., D74:033011, 2006. arXiv:hep-ph/0604111, doi:10.1103/PhysRevD.74.033011.
[118]Giacomo Cacciapaglia, Csaba Csaki, Christophe Grojean, and John Terning. Curing the ills of higgsless models: the s parameter and unitarity. Phys. Rev., D71:035015, 2005. arXiv:hep-ph/0409126.
[119]Giacomo Cacciapaglia, Aldo Deandrea, Suzanne Gascon-Shotkin, Solène Le Corre, Morgan Lethuillier, and Junquan Tao. Search for a lighter Higgs boson in Two Higgs Doublet Models. JHEP, 12:068, 2016. arXiv:1607.08653, doi:10.1007/JHEP12(2016)068.
[120]Matteo Cacciari and Gavin P. Salam. Dispelling the n**3 myth for the k(t) jet-finder. Phys. Lett., B641:57–61, 2006. arXiv:hep-ph/0512210.
[121]Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-$k_t$ jet clustering algorithm. Journal of High Energy Physics, 2008(04):063, 2008.
[122]Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet User Manual. Eur.Phys.J., C72:1896, 2012. arXiv:1111.6097, doi:10.1140/epjc/s10052-012-1896-2.
[123]Robert N. Cahn, Stephen D. Ellis, Ronald Kleiss, and W. James Stirling. Transverse momentum signatures for heavy higgs bosons. Phys. Rev., D35:1626, 1987.
[124]John Campbell, R. Keith Ellis, and David L. Rainwater. Next-to-leading order QCD predictions for W + 2jet and Z + 2jet production at the CERN LHC. Phys. Rev., D68:094021, 2003. arXiv:hep-ph/0308195.
[125]John M. Campbell and R.K. Ellis. MCFM for the Tevatron and the LHC. Nucl.Phys.Proc.Suppl., 205-206:10–15, 2010. arXiv:1007.3492, doi:10.1016/j.nuclphysbps.2010.08.011.
[126]F. Caravaglios, Michelangelo L. Mangano, M. Moretti, and R. Pittau. A new approach to multi-jet calculations in hadron collisions. Nucl. Phys., B539:215–232, 1999. arXiv:hep-ph/9807570.
[127]Marcela Carena, Alejandro Daleo, Bogdan A. Dobrescu, and Timothy M. P. Tait. $Z^\prime $ gauge bosons at the Tevatron. Phys. Rev., D70:093009, 2004. arXiv:hep-ph/0408098, doi:10.1103/PhysRevD.70.093009.
[128]R. Casalbuoni, S. De Curtis, and M. Redi. Signals of the degenerate bess model at the lhc. Eur. Phys. J., C18:65–71, 2000. arXiv:hep-ph/0007097.
[129]S. Catani, Yuri L. Dokshitzer, M. H. Seymour, and B. R. Webber. Longitudinally invariant k(t) clustering algorithms for hadron hadron collisions. Nucl. Phys., B406:187–224, 1993.
[130]Joydeep Chakrabortty, Partha Konar, and Tanmoy Mondal. Constraining a class of B-L extended models from vacuum stability and perturbativity. Phys. Rev., D89(5):056014, 2014. arXiv:1308.1291, doi:10.1103/PhysRevD.89.056014.
[131]Mikael Chala. Direct bounds on heavy toplike quarks with standard and exotic decays. Phys. Rev., D96(1):015028, 2017. arXiv:1705.03013, doi:10.1103/PhysRevD.96.015028.
[132]Mikael Chala, Felix Kahlhoefer, Matthew McCullough, Germano Nardini, and Kai Schmidt-Hoberg. Constraining Dark Sectors with Monojets and Dijets. JHEP, 07:089, 2015. arXiv:1503.05916, doi:10.1007/JHEP07(2015)089.
[133]Michael S. Chanowitz. Quantum corrections from nonresonant w w scattering. Phys. Rept., 320:139–146, 1999. arXiv:hep-ph/9903522.
[134]Serguei Chatrchyan and others. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys.Lett., B716:30–61, 2012. arXiv:1207.7235, doi:10.1016/j.physletb.2012.08.021.
[135]Serguei Chatrchyan and others. Measurement of differential top-quark pair production cross sections in $pp$ colisions at $\sqrt s=7$ TeV. Eur.Phys.J., C73(3):2339, 2013. arXiv:1211.2220, doi:10.1140/epjc/s10052-013-2339-4.
[136]Serguei Chatrchyan and others. Studies of jet mass in dijet and W/Z + jet events. JHEP, 05:090, 2013. arXiv:1303.4811, doi:10.1007/JHEP05(2013)090.
[137]Serguei Chatrchyan and others. Measurement of the ratio of inclusive jet cross sections using the anti-$k_T$ algorithm with radius parameters R=0.5 and 0.7 in pp collisions at $\sqrt s=7$  TeV. Phys. Rev., D90(7):072006, 2014. arXiv:1406.0324, doi:10.1103/PhysRevD.90.072006.
[138]Serguei Chatrchyan and others. Measurement of the triple-differential cross section for photon+jets production in proton-proton collisions at $\sqrt s$=7 TeV. JHEP, 06:009, 2014. arXiv:1311.6141, doi:10.1007/JHEP06(2014)009.
[139]Serguei Chatrchyan and others. Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks. Phys.Rev., D89:012003, 2014. arXiv:1310.3687, doi:10.1103/PhysRevD.89.012003.
[140]S. Chekanov and others. Substructure dependence of jet cross sections at hera and determination of alpha(s). Nucl. Phys., B700:3–50, 2004. arXiv:hep-ex/0405065.
[141]Chien-Yi Chen, S. Dawson, and Yue Zhang. Higgs CP Violation from Vectorlike Quarks. Phys. Rev., D92(7):075026, 2015. arXiv:1507.07020, doi:10.1103/PhysRevD.92.075026.
[142]Hsin-Chia Cheng and Ian Low. Tev symmetry and the little hierarchy problem. JHEP, 09:051, 2003. arXiv:hep-ph/0308199.
[143]CMS. Technical design report, CERN/LHCC/94-33. 1994.
[144]CMS Collaboration. Search for dark matter production in association with jets, or hadronically decaying W or Z boson at $\sqrt s = 13$ TeV. Technical Report, CERN, 2016.
[145]CMS Collaboration. Search for new physics in high mass diphoton events in $3.3~\mathrm fb^-1$ of proton-proton collisions at $\sqrt s=13~\mathrm TeV$ and combined interpretation of searches at $8 \mathrm TeV$ and $13 \mathrm TeV$. Technical Report, CERN, 2016.
[146]The ATLAS collaboration. Search for resonances in diphoton events with the ATLAS detector at $\sqrt s$ = 13 TeV. Technical Report, CERN, 2016.
[147]Eric Conte, Benjamin Fuks, and Guillaume Serret. MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology. Comput. Phys. Commun., 184:222–256, 2013. arXiv:1206.1599, doi:10.1016/j.cpc.2012.09.009.
[148]G. Corcella and others. Herwig 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). JHEP, 01:010, 2001. arXiv:hep-ph/0011363.
[149]Claudio Coriano, Luigi Delle Rose, and Carlo Marzo. Vacuum Stability in U(1)-Prime Extensions of the Standard Model with TeV Scale Right Handed Neutrinos. Phys. Lett., B738:13–19, 2014. arXiv:1407.8539, doi:10.1016/j.physletb.2014.09.001.
[150]Claudio Coriano, Luigi Delle Rose, and Carlo Marzo. Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and $U(1)_B-L$. JHEP, 02:135, 2016. arXiv:1510.02379, doi:10.1007/JHEP02(2016)135.
[151]Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J., C71:1554, 2011. [Erratum: Eur. Phys. J.C73,2501(2013)]. arXiv:1007.1727, doi:10.1140/epjc/s10052-011-1554-0, 10.1140/epjc/s10052-013-2501-z.
[152]Kyle Cranmer and Itay Yavin. RECAST: Extending the Impact of Existing Analyses. JHEP, 04:038, 2011. arXiv:1010.2506, doi:10.1007/JHEP04(2011)038.
[153]Csaba Csaki, Christophe Grojean, Hitoshi Murayama, Luigi Pilo, and John Terning. Gauge theories on an interval: unitarity without a higgs. Phys. Rev., D69:055006, 2004. arXiv:hep-ph/0305237.
[154]Csaba Csaki, Christophe Grojean, Luigi Pilo, and John Terning. Towards a realistic model of higgsless electroweak symmetry breaking. Phys. Rev. Lett., 92:101802, 2004. arXiv:hep-ph/0308038.
[155]Csaba Csaki, Jay Hubisz, Graham D. Kribs, Patrick Meade, and John Terning. Big corrections from a little higgs. Phys. Rev., D67:115002, 2003. arXiv:hep-ph/0211124.
[156]Michał Czakon, Paul Fiedler, and Alexander Mitov. Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through $O(α\frac 4S)$. Phys.Rev.Lett., 110:252004, 2013. arXiv:1303.6254, doi:10.1103/PhysRevLett.110.252004.
[157]Arindam Das, Satsuki Oda, Nobuchika Okada, and Dai-suke Takahashi. Classically conformal U(1)$^′$ extended standard model, electroweak vacuum stability, and LHC Run-2 bounds. Phys. Rev., D93(11):115038, 2016. arXiv:1605.01157, doi:10.1103/PhysRevD.93.115038.
[158]Arindam Das, Nobuchika Okada, and Nathan Papapietro. Electroweak vacuum stability in classically conformal B-L extension of the Standard Model. Eur. Phys. J., C77(2):122, 2017. arXiv:1509.01466, doi:10.1140/epjc/s10052-017-4683-2.
[159]Celine Degrande, Claude Duhr, Benjamin Fuks, David Grellscheid, Olivier Mattelaer, and Thomas Reiter. UFO - The Universal FeynRules Output. Comput. Phys. Commun., 183:1201–1214, 2012. arXiv:1108.2040, doi:10.1016/j.cpc.2012.01.022.
[160]Celine Degrande, Olivier Mattelaer, Richard Ruiz, and Jessica Turner. Fully-Automated Precision Predictions for Heavy Neutrino Production Mechanisms at Hadron Colliders. Phys. Rev., D94(5):053002, 2016. arXiv:1602.06957, doi:10.1103/PhysRevD.94.053002.
[161]F. del Aguila, J. de Blas, and M. Perez-Victoria. Effects of new leptons in Electroweak Precision Data. Phys. Rev., D78:013010, 2008. arXiv:0803.4008, doi:10.1103/PhysRevD.78.013010.
[162]Frank F. Deppisch, P. S. Bhupal Dev, and Apostolos Pilaftsis. Neutrinos and Collider Physics. New J. Phys., 17(7):075019, 2015. arXiv:1502.06541, doi:10.1088/1367-2630/17/7/075019.
[163]Frank F. Deppisch, Wei Liu, and Manimala Mitra. Long-lived Heavy Neutrinos from Higgs Decays. JHEP, 08:181, 2018. arXiv:1804.04075, doi:10.1007/JHEP08(2018)181.
[164]Daniel Dercks, Nishita Desai, Jong Soo Kim, Krzysztof Rolbiecki, Jamie Tattersall, and Torsten Weber. CheckMATE 2: From the model to the limit. Comput. Phys. Commun., 221:383–418, 2017. arXiv:1611.09856, doi:10.1016/j.cpc.2017.08.021.
[165]Daniel Dercks, Herbi Dreiner, Manuel E. Krauss, Toby Opferkuch, and Annika Reinert. R-Parity Violation at the LHC. Eur. Phys. J., C77(12):856, 2017. arXiv:1706.09418, doi:10.1140/epjc/s10052-017-5414-4.
[166]Abdelhak Djouadi. Decays of the Higgs bosons. In Quantum effects in the minimal supersymmetric standard model. Proceedings, International Workshop, MSSM, Barcelona, Spain, September 9-13, 1997, 197–222. 1997. arXiv:hep-ph/9712334.
[167]Abdelhak Djouadi and Alexander Lenz. Sealing the fate of a fourth generation of fermions. Phys. Lett., B715:310–314, 2012. arXiv:1204.1252, doi:10.1016/j.physletb.2012.07.060.
[168]A. Dobado, M. J. Herrero, J. R. Pelaez, and E. Ruiz Morales. Lhc sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector. Phys. Rev., D62:055011, 2000. arXiv:hep-ph/9912224.
[169]A. Dobado and J. R. Pelaez. The inverse amplitude method in chiral perturbation theory. Phys. Rev., D56:3057–3073, 1997. arXiv:hep-ph/9604416.
[170]Yuri L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber. Better jet clustering algorithms. JHEP, 08:001, 1997. arXiv:hep-ph/9707323.
[171]Yuri L. Dokshitzer, G.D. Leder, S. Moretti, and B.R. Webber. Better jet clustering algorithms. JHEP, 9708:001, 1997. arXiv:hep-ph/9707323.
[172]Manuel Drees, Herbi Dreiner, Daniel Schmeier, Jamie Tattersall, and Jong Soo Kim. CheckMATE: Confronting your Favourite New Physics Model with LHC Data. Comput. Phys. Commun., 187:227–265, 2015. arXiv:1312.2591, doi:10.1016/j.cpc.2014.10.018.
[173]R. Keith Ellis and Sinisa Veseli. Strong radiative corrections to W b anti-b production in p anti-p collisions. Phys. Rev., D60:011501, 1999. arXiv:hep-ph/9810489.
[174]Stephen D. Ellis and Davison E. Soper. Successive combination jet algorithm for hadron collisions. Phys. Rev., D48:3160–3166, 1993. arXiv:hep-ph/9305266.
[175]Christoph Englert, Matthew McCullough, and Michael Spannowsky. S-Channel Dark Matter Simplified Models and Unitarity. Phys. Dark Univ., 14:48–56, 2016. arXiv:1604.07975, doi:10.1016/j.dark.2016.09.002.
[176]B. I. Ermolaev and Victor S. Fadin. Log - Log Asymptotic Form of Exclusive Cross-Sections in Quantum Chromodynamics. JETP Lett., 33:269–272, 1981.
[177]Malcolm Fairbairn, John Heal, Felix Kahlhoefer, and Patrick Tunney. Constraints on Z’ models from LHC dijet searches and implications for dark matter. JHEP, 09:018, 2016. arXiv:1605.07940, doi:10.1007/JHEP09(2016)018.
[178]Giancarlo Ferrera, Massimiliano Grazzini, and Francesco Tramontano. Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys.Rev.Lett., 107:152003, 2011. arXiv:1107.1164, doi:10.1103/PhysRevLett.107.152003.
[179]Giancarlo Ferrera, Massimiliano Grazzini, and Francesco Tramontano. Associated $ZH$ production at hadron colliders: the fully differential NNLO QCD calculation. Phys.Lett., B740:51–55, 2015. arXiv:1407.4747, doi:10.1016/j.physletb.2014.11.040.
[180]Sylvain Fichet, Gero von Gersdorff, Eduardo Ponton, and Rogerio Rosenfeld. The Excitation of the Global Symmetry-Breaking Vacuum in Composite Higgs Models. JHEP, 09:158, 2016. arXiv:1607.03125, doi:10.1007/JHEP09(2016)158.
[181]Patrick J. Fox and Ciaran Williams. Next-to-Leading Order Predictions for Dark Matter Production at Hadron Colliders. Phys. Rev., D87(5):054030, 2013. arXiv:1211.6390, doi:10.1103/PhysRevD.87.054030.
[182]Stefano Frixione, Eric Laenen, Patrick Motylinski, Bryan R. Webber, and Chris D. White. Single-top hadroproduction in association with a W boson. JHEP, 0807:029, 2008. arXiv:0805.3067, doi:10.1088/1126-6708/2008/07/029.
[183]Stefano Frixione, Paolo Nason, and Bryan R. Webber. Matching nlo qcd and parton showers in heavy flavour production. JHEP, 08:007, 2003. arXiv:hep-ph/0305252.
[184]Stefano Frixione, Fabian Stoeckli, Paolo Torrielli, and Bryan R. Webber. NLO QCD corrections in Herwig++ with MC@NLO. JHEP, 1101:053, 2011. arXiv:1010.0568, doi:10.1007/JHEP01(2011)053.
[185]Stefano Frixione and Bryan R. Webber. Matching nlo qcd computations and parton shower simulations. JHEP, 06:029, 2002. arXiv:hep-ph/0204244.
[186]Stefano Frixione and Bryan R. Webber. Matching NLO QCD computations and parton shower simulations. JHEP, 06:029, 2002. arXiv:hep-ph/0204244.
[187]Robert Garisto. Editorial: theorists react to the cern 750 gev diphoton data. Phys. Rev. Lett., 116:150001, Apr 2016. URL: http://link.aps.org/doi/10.1103/PhysRevLett.116.150001, doi:10.1103/PhysRevLett.116.150001.
[188]G. F. Giudice and others. Searches for new physics. In 3rd CERN Workshop on LEP2 Physics Geneva, Switzerland, November 2-3, 1995, 463–524. 1996. [,463(1996)]. arXiv:hep-ph/9602207.
[189]P. Golonka and others. The tauola-photos-f environment for the tauola and photos packages, release ii. Comput. Phys. Commun., 174:818–835, 2006. arXiv:hep-ph/0312240.
[190]A. Gomez Nicola and J. R. Pelaez. Meson meson scattering within one loop chiral perturbation theory and its unitarization. Phys. Rev., D65:054009, 2002. arXiv:hep-ph/0109056.
[191]Eilam Gross and Ofer Vitells. Trial factors or the look elsewhere effect in high energy physics. Eur. Phys. J., C70:525–530, 2010. arXiv:1005.1891, doi:10.1140/epjc/s10052-010-1470-8.
[192]Ulrich Haisch, Felix Kahlhoefer, and Emanuele Re. QCD effects in mono-jet searches for dark matter. JHEP, 12:007, 2013. arXiv:1310.4491, doi:10.1007/JHEP12(2013)007.
[193]Roni Harnik, Joachim Kopp, and Pedro A. N. Machado. Exploring nu Signals in Dark Matter Detectors. JCAP, 1207:026, 2012. arXiv:1202.6073, doi:10.1088/1475-7516/2012/07/026.
[194]Julian Heeck. Unbroken B – L symmetry. Phys. Lett., B739:256–262, 2014. arXiv:1408.6845, doi:10.1016/j.physletb.2014.10.067.
[195]Jan Heisig, Michael Krämer, Mathieu Pellen, and Christopher Wiebusch. Constraints on Majorana Dark Matter from the LHC and IceCube. Phys. Rev., D93(5):055029, 2016. arXiv:1509.07867, doi:10.1103/PhysRevD.93.055029.
[196]JoAnne L. Hewett, Frank J. Petriello, and Thomas G. Rizzo. Constraining the littlest higgs. ((u)). JHEP, 10:062, 2003. arXiv:hep-ph/0211218.
[197]B. Holdom. T’ at the lhc: the physics of discovery. JHEP, 03:063, 2007. arXiv:hep-ph/0702037.
[198]Agnieszka Ilnicka, Tania Robens, and Tim Stefaniak. Constraining Extended Scalar Sectors at the LHC and beyond. Mod. Phys. Lett., A33(10n11):1830007, 2018. arXiv:1803.03594, doi:10.1142/S0217732318300070.
[199]Philip Ilten, Yotam Soreq, Mike Williams, and Wei Xue. Serendipity in dark photon searches. JHEP, 06:004, 2018. arXiv:1801.04847, doi:10.1007/JHEP06(2018)004.
[200]K. Iordanidis and D. Zeppenfeld. Searching for a heavy higgs boson via the h –> l nu j j decay mode at the cern lhc. Phys. Rev., D57:3072–3083, 1998. arXiv:hep-ph/9709506.
[201]Thomas Jacques, Andrey Katz, Enrico Morgante, Davide Racco, Mohamed Rameez, and Antonio Riotto. Complementarity of DM searches in a consistent simplified model: the case of $Z’$. JHEP, 10:071, 2016. arXiv:1605.06513, doi:10.1007/JHEP10(2016)071.
[202]Thomas Junk. Confidence level computation for combining searches with small statistics. Nucl. Instrum. Meth., A434:435–443, 1999. arXiv:hep-ex/9902006, doi:10.1016/S0168-9002(99)00498-2.
[203]Felix Kahlhoefer, Kai Schmidt-Hoberg, Thomas Schwetz, and Stefan Vogl. Implications of unitarity and gauge invariance for simplified dark matter models. JHEP, 02:016, 2016. [JHEP02,016(2016)]. arXiv:1510.02110, doi:10.1007/JHEP02(2016)016.
[204]V. Khachatryan and others. Measurements of the associated production of a Z boson and b jets in pp collisions at $\sqrt s = 8\,\text TeV $. Eur. Phys. J., C77(11):751, 2017. arXiv:1611.06507, doi:10.1140/epjc/s10052-017-5140-y.
[205]Vardan Khachatryan and others. Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at $\sqrt s=7$ TeV. Phys. Lett., B741:12–37, 2015. arXiv:1406.7533, doi:10.1016/j.physletb.2014.12.003.
[206]Vardan Khachatryan and others. Measurements of jet multiplicity and differential production cross sections of $Z +$ jets events in proton-proton collisions at $\sqrt s =$ 7 TeV. Phys. Rev., D91(5):052008, 2015. arXiv:1408.3104, doi:10.1103/PhysRevD.91.052008.
[207]Vardan Khachatryan and others. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 $\,\text TeV$. Eur. Phys. J., C75(5):212, 2015. arXiv:1412.8662, doi:10.1140/epjc/s10052-015-3351-7.
[208]Vardan Khachatryan and others. Search for heavy Majorana neutrinos in $\mu ^\pm \mu ^\pm +$ jets events in proton-proton collisions at $\sqrt s$ = 8 TeV. Phys. Lett., B748:144–166, 2015. arXiv:1501.05566, doi:10.1016/j.physletb.2015.06.070.
[209]Vardan Khachatryan and others. Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt s = 13\,\text TeV $. Eur. Phys. J., C76(8):451, 2016. arXiv:1605.04436, doi:10.1140/epjc/s10052-016-4286-3.
[210]Vardan Khachatryan and others. Measurement of the integrated and differential $t \bar t$ production cross sections for high-$p_t$ top quarks in $pp$ collisions at $\sqrt s =$ 8 TeV. Phys. Rev., D94(7):072002, 2016. arXiv:1605.00116, doi:10.1103/PhysRevD.94.072002.
[211]Vardan Khachatryan and others. Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at $ \sqrt s=8 $ TeV using $H \to WW$ decays. JHEP, 03:032, 2017. arXiv:1606.01522, doi:10.1007/JHEP03(2017)032.
[212]Vardan Khachatryan and others. Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at $\sqrt s =$ 8 TeV. Phys. Rev., D95:052002, 2017. arXiv:1610.04222, doi:10.1103/PhysRevD.95.052002.
[213]Vardan Khachatryan and others. Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state. Phys. Lett., B771:80–105, 2017. arXiv:1612.00999, doi:10.1016/j.physletb.2017.05.019.
[214]Jong Soo Kim, Daniel Schmeier, Jamie Tattersall, and Krzysztof Rolbiecki. A framework to create customised LHC analyses within CheckMATE. Comput. Phys. Commun., 196:535–562, 2015. arXiv:1503.01123, doi:10.1016/j.cpc.2015.06.002.
[215]Michael Klasen, Florian Lyonnet, and Farinaldo S. Queiroz. NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the B–L model. Eur. Phys. J., C77(5):348, 2017. arXiv:1607.06468, doi:10.1140/epjc/s10052-017-4904-8.
[216]R. Kleiss and W. James Stirling. Tagging the higgs. Phys. Lett., B200:193, 1988.
[217]Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Wolfgang Magerl, Doris Proschofsky-Spindler, and Wolfgang Waltenberger. SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry. Eur. Phys. J., C74:2868, 2014. arXiv:1312.4175, doi:10.1140/epjc/s10052-014-2868-5.
[218]Kenneth Lane and Stephen Mrenna. The collider phenomenology of technihadrons in the technicolor straw man model. Phys. Rev., D67:115011, 2003. arXiv:hep-ph/0210299.
[219]Manfred Lindner, Farinaldo S. Queiroz, Werner Rodejohann, and Xun-Jie Xu. Neutrino-electron scattering: general constraints on Z$^′$ and dark photon models. JHEP, 05:098, 2018. arXiv:1803.00060, doi:10.1007/JHEP05(2018)098.
[220]D. López-Val and T. Robens. $\Delta r$ and the W-boson mass in the singlet extension of the standard model. Phys. Rev., D90:114018, 2014. arXiv:1406.1043, doi:10.1103/PhysRevD.90.114018.
[221]Eamonn Maguire, Lukas Heinrich, and Graeme Watt. HEPData: a repository for high energy physics data. J. Phys. Conf. Ser., 898(10):102006, 2017. arXiv:1704.05473, doi:10.1088/1742-6596/898/10/102006.
[222]Fabio Maltoni and Tim Stelzer. Madevent: automatic event generation with madgraph. JHEP, 02:027, 2003. arXiv:hep-ph/0208156.
[223]Michelangelo L. Mangano, Mauro Moretti, Fulvio Piccinini, Roberto Pittau, and Antonio D. Polosa. Alpgen, a generator for hard multiparton processes in hadronic collisions. JHEP, 07:001, 2003. arXiv:hep-ph/0206293.
[224]Michelangelo L. Mangano, Mauro Moretti, and Roberto Pittau. Multijet matrix elements and shower evolution in hadronic collisions: w b anti-b + (n)jets as a case study. Nucl. Phys., B632:343–362, 2002. arXiv:hep-ph/0108069.
[225]Alberto Mariotti, Diego Redigolo, Filippo Sala, and Kohsaku Tobioka. New LHC bound on low-mass diphoton resonances. Phys. Lett., B783:13–18, 2018. arXiv:1710.01743, doi:10.1016/j.physletb.2018.06.039.
[226]A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt. Parton distributions for the LHC. Eur. Phys. J., C63:189–285, 2009. arXiv:0901.0002, doi:10.1140/epjc/s10052-009-1072-5.
[227]A.D. Martin, W.J. Stirling, R.S. Thorne, and G. Watt. Parton distributions for the LHC. Eur.Phys.J., C63:189–285, 2009. arXiv:0901.0002, doi:10.1140/epjc/s10052-009-1072-5.
[228]M Mertens, J Grosse-Knetter, M Schumacher, and M Kobel. Monte carlo study on anomalous quartic couplings in the scattering of weak gauge bosons with the atlas detector. Technical Report ATL-PHYS-INT-2007-009. ATL-COM-PHYS-2007-021, CERN, Geneva, Apr 2007.
[229]Alfred H. Mueller. On the Multiplicity of Hadrons in QCD Jets. Phys. Lett., B104:161–164, 1981.
[230]Matthias Neubert, Jian Wang, and Cen Zhang. Higher-Order QCD Predictions for Dark Matter Production in Mono-$Z$ Searches at the LHC. JHEP, 02:082, 2016. arXiv:1509.05785, doi:10.1007/JHEP02(2016)082.
[231]A Neusiedl and S Tapproge. Measurement of the inclusive $b\overline b$ dijetmass cross section in early atlas data. Technical Report ATL-COM-PHYS-2011-039, CERN, Geneva, January 2011.
[232]J. A. Oller, E. Oset, and J. R. Pelaez. Meson meson and meson baryon interactions in a chiral non- perturbative approach. Phys. Rev., D59:074001, 1999. arXiv:hep-ph/9804209.
[233]Frank E. Paige, Serban D. Protopopescu, Howard Baer, and Xerxes Tata. ISAJET 7.69: A Monte Carlo event generator for pp, anti-p p, and e+e- reactions. Technical Report, various, 2003. arXiv:hep-ph/0312045.
[234]Francesco Pandolfi. these proceedings.
[235]Michele Papucci, Kazuki Sakurai, Andreas Weiler, and Lisa Zeune. Fastlim: a fast LHC limit calculator. Eur. Phys. J., C74(11):3163, 2014. arXiv:1402.0492, doi:10.1140/epjc/s10052-014-3163-1.
[236]C. Patrignani and others. Review of Particle Physics. Chin. Phys., C40(10):100001, 2016. doi:10.1088/1674-1137/40/10/100001.
[237]Tilman Plehn and Michael Rauch. The quartic higgs coupling at hadron colliders. Phys. Rev., D72:053008, 2005. arXiv:hep-ph/0507321, doi:10.1103/PhysRevD.72.053008.
[238]Giovanni Marco Pruna. Phenomenology of the minimal $B-L$ Model: the Higgs sector at the Large Hadron Collider and future Linear Colliders. PhD thesis, Southampton U., 2011. URL: https://inspirehep.net/record/914976/files/arXiv:1106.4691.pdf, arXiv:1106.4691.
[239]J. Pumplin and others. New generation of parton distributions with uncertainties from global QCD analysis. JHEP, 07:012, 2002. arXiv:hep-ph/0201195.
[240]David L. Rainwater and D. Zeppenfeld. Observing $h \to w^(*)w^(*) \to e^\pm \mu ^\mp /\!\!\!p_t$ in weak boson fusion with dual forward jet tagging at the cern lhc. Phys. Rev., D60:113004, 1999. arXiv:hep-ph/9906218.
[241]Alexander L. Read. Presentation of search results: The CL(s) technique. J. Phys., G28:2693–2704, 2002. [,11(2002)]. doi:10.1088/0954-3899/28/10/313.
[242]Tania Robens and Tim Stefaniak. Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1. Eur. Phys. J., C75:104, 2015. arXiv:1501.02234, doi:10.1140/epjc/s10052-015-3323-y.
[243]Gavin P. Salam and Gregory Soyez. A practical Seedless Infrared-Safe Cone jet algorithm. JHEP, 05:086, 2007. arXiv:arXiv:0704.0292 [hep-ph].
[244]R. Sekhar Chivukula and others. A three site higgsless model. Phys. Rev., D74:075011, 2006. arXiv:hep-ph/0607124.
[245]Michael H. Seymour. Searches for new particles using cone and cluster jet algorithms: A Comparative study. Z. Phys., C62:127–138, 1994.
[246]Albert M Sirunyan and others. Measurement of the differential cross sections for the associated production of a $W$ boson and jets in proton-proton collisions at $\sqrt s=13$ TeV. Phys. Rev., D96(7):072005, 2017. arXiv:1707.05979, doi:10.1103/PhysRevD.96.072005.
[247]Albert M Sirunyan and others. Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at $\sqrt s =$ 13 TeV. Phys. Rev., D97(11):112003, 2018. arXiv:1803.08856, doi:10.1103/PhysRevD.97.112003.
[248]Albert M Sirunyan and others. Search for high-mass resonances in dilepton final states in proton-proton collisions at $\sqrt s=$ 13 TeV. JHEP, 06:120, 2018. arXiv:1803.06292, doi:10.1007/JHEP06(2018)120.
[249]Albert M Sirunyan and others. Search for single production of vector-like quarks decaying to a b quark and a Higgs boson. JHEP, 06:031, 2018. arXiv:1802.01486, doi:10.1007/JHEP06(2018)031.
[250]Albert M Sirunyan and others. Search for vector-like T and B quark pairs in final states with leptons at $\sqrt s =$ 13 TeV. JHEP, 08:177, 2018. arXiv:1805.04758, doi:10.1007/JHEP08(2018)177.
[251]Albert M Sirunyan and others. Search for vector-like quarks in events with two oppositely charged leptons and jets in proton-proton collisions at $\sqrt s =$ 13 TeV. Submitted to: Eur. Phys. J., 2018. arXiv:1812.09768.
[252]Torbjorn Sjostrand, Stephen Mrenna, and Peter Skands. Pythia 6.4 physics and manual. JHEP, 05:026, 2006. arXiv:hep-ph/0603175.
[253]Peter Z. Skands and others. SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators. JHEP, 07:036, 2004. arXiv:hep-ph/0311123, doi:10.1088/1126-6708/2004/07/036.
[254]Witold Skiba and David Tucker-Smith. Using jet mass to discover vector quarks at the lhc. Phys. Rev., D75:115010, 2007. arXiv:hep-ph/0701247.
[255]E. Stefanidis. UCL PhD thesis. 2007.
[256]Abraham Wald. An extension of Wilks’ method for setting tolerance limits. Annals Math. Statist., 14(1):45–55, March 1943. URL: http://projecteuclid.org/euclid.aoms/1177731491, doi:http://dx.doi.org/10.1214/aoms/1177731491.
[257]James D. Wells, Zhengkang Zhang, and Yue Zhao. Establishing the Isolated Standard Model. Phys. Rev., D96(1):015005, 2017. arXiv:1702.06954, doi:10.1103/PhysRevD.96.015005.
[258]Kathleen Whalen. these proceedings.
[259]S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. Annals Math. Statist., 9(1):60–62, 1938. doi:10.1214/aoms/1177732360.